This challenge is open to students in Indian universities and colleges. The challenge will use IDD-Lite, a dataset that is small and compact to fit on any personal computer and so will not huge-compute infrastructure. IDD-Lite is less than 50MB is size, contains 7 classes (compared to 30 in IDD).
python evaluate/idd_lite_evaluate_mIoU.py --gts $GT --preds $PRED --num-workers $C
Team/Uploader Name | Method Name | mIoU for L1 IDs at 128p |
---|---|---|
kt002 | trial | 0.0321 |
SSN_CSE | Modified FCN | 0.3438 |
KLE Tech_Team | CustomNet | 0.4563 |
KLE Tech_Team | CustomNet | 0.0768 |
Deepsegmentation | Deep Encoder Decoder Network for semantic segmentation | 0.5017 |
Deepsegmentation | Deep Encoder Decoder Network for semantic segmentation | 0.2271 |
bekar_phd_students | Unemployment ki shakti | 0.4809 |
Deepsegmentation | Deep Encoder Decoder Network for semantic segmetnation | 0.5017 |
TCE RS Lab | Sematic Segmentation U-net | 0.5323 |
kz001 | CNet | 0.5232 |
TCE RS Lab | Sematic Segmentation U-net | 0.5432 |
SGGS-IITJ | testing | 0.5296 |
KLE Tech_Srikar | CustomNet | 0.0321 |
SGGS-IITJ | Deep CNN | 0.5586 |
SSN_CSE | FCN 2 | 0.3771 |
KLE Tech_Team | CustomNet | 0.0781 |
kz002 | CNet | 0.5196 |
kz003 | CNet | 0.4802 |
test | test | 0.4748 |
t1 | t2 | 0.4831 |
bekar_phd_students | Unemployment ki shakti | 0.5293 |
SSS | Gated Shape CNN | 0.4872 |
BharatAI | BharatAI-t1 | 0.5262 |
SSN_CSE | FCN 3 | 0.3137 |
Sanchayan Santra | nnet | 0.3235 |
Residual U-Net | Residual U-Net2 | 0.5935 |
test | test | 0.3235 |
bekar_phd_students | Unemployment ki shakti | 0.4968 |
SSN_CSE | UNet | 0.1361 |
SSN_CSE | FCN | 0.0926 |
Deepsegmentation | Deep Encoder Decoder Network for semantic segmentation | 0.4738 |
bekar_phd_student | bekar | 0.4616 |
tyrion | first_try | 0.4043 |
SGGS-IITJ | testing | 0.5176 |
KLE Tech_Team | CustomNet | 0.538 |
SGGS-IITJ | Server 1 | 0.5588 |
TCE RS Lab | Sematic Segmentation U-net | 0.532 |
First_Resnet | Residual U-Net | 0.5838 |
kt001 | trial | 0.0006 |
Swetha B | Enet | 0.0 |
Swetha B | Enet | 0.0 |
Swetha B | Enet | 0.0 |
Swetha B | Enet | 0.0 |
Swetha B | Enet | 0.0 |
Swetha B | Enet | 0.3986 |
Swetha B | Enet | 0.3986 |
mohit_asudani | resnet | 0.3885 |
Testing | Testing | 0.0959 |
testing | testing | 0.0959 |
tensorcat | dlv3p | 0.0031 |
mohit_asudani | resnet | 0.3885 |
USSB | Try1 | 0.5614 |
SSN_CSE | FCN 4 | 0.3407 |
kz004 | CNet | 0.4349 |
Parimal | TBd | 0.0611 |
Parimal | TBd | 0.0611 |
PK | tK | 0.0611 |
PK | tK | 0.0611 |
PK1 | tK1 | 0.0611 |
vision | deep | 0.0611 |
SSS | Tuned GSCNN | 0.5231 |
BharatAI | BharatAI-t2 | 0.4933 |
PV=NRT | segmentation_model | 0.0382 |
coe deep | trying | 0.5296 |
NAS_IITRPR | Baseline | 0.0003 |
Ryan Dsouza | Spatial pooling pyramid | 0.0162 |
NAS_IITRPR | Baseline | 0.4435 |
Ryan Dsouza | Gods Touch | 0.0212 |
Ryan Dsouza | Gods Touches | 0.0445 |
rajat modi | tbd | 0.4348 |
godzilla | godzilla | 0.4348 |
godzilla2 | godzilla2 | 0.4354 |
SSS | Resnet-101 | 0.5676 |
Ryan Dsouza | low score | 0.0665 |
PPR | Deep Method | 0.0729 |
PPR | Deep Method | 0.5611 |
PV | Seg_model | 0.0403 |
USSB | Try2 | 0.5505 |
SSN_CSE | UNet | 0.0778 |
SSN_CSE | FCN 1 | 0.4727 |
SSN_CSE | UNet Modified | 0.4705 |
godzilla3 | mo | 0.4329 |
KLE Tech_Team_02 | VAENet | 0.5232 |
KLE Tech_Team_02 | VAENet | 0.5196 |
godzilla4 | godzilla4 | 0.4433 |
Himanshu Mittal | SemanticSegmentation_Enet_v3 | 0.0 |
godzilla5 | godzilla5 | 0.4374 |
godzilla5 | godzilla5 | 0.4374 |
godzilla6 | godzilla6 | 0.4373 |
SGGS-IITJ | Deep CNN | 0.5588 |
USSB | Try3 | 0.3388 |
PARIMAL | PARIMAL | 0.528 |
PPR | Deep method1 | 0.5681 |
Tabasco | Trial | 0.5438 |
mohit_asudani | resnet | 0.4243 |
Alphamales | Baseline | 0.2405 |
tabasco | Trial2 | 0.5511 |
USSB | DCNN | 0.5502 |
SGGS-IITJ | Try_Server2 | 0.5201 |
mohit_asudani | resnet | 0.4516 |
Deepsegmentation | Deep Encoder Decoder Network for semantic segmetnation | 0.306 |
Ryan Dsouza | hallelujah | 0.0403 |
USSB | dxb13 | 0.507 |
SSS | Tuned GSCNN | 0.5926 |
SSS | Tuned GSCNN | 0.5785 |
mohit_asudani | resnet | 0.4515 |
USSB | DCNN | 0.5519 |
SGGS-IITJ | RESNET | 0.5391 |
jai mata ki | jai mata ki | 0.4777 |
TCE RS Lab | Sematic Segmentation U-net | 0.5586 |
USSB | DCNN | 0.5193 |
USSB | pur9 | 0.5926 |
USSB | pur7 | 0.6009 |
LYNX | DRNet | 0.0693 |
PARIMAL | U Net | 0.5807 |
Lynx | DRNet2 | 0.0714 |
lab | lab | 0.5246 |
Lynx | DSP | 0.0632 |
kz005 | CNet | 0.3092 |
Lynx | DSP2 | 0.0623 |
Residual U-Net | Custom Net | 0.6081 |
coe deep | custom_net | 0.4845 |
TCE RS Lab | Sematic Segmentation Residual U-net | 0.5838 |
Ryan Dsouza | Devils dice | 0.3117 |
parimal_1 | secret | 0.4183 |
Cerebro | PSPnet | 0.0779 |
PARIMAL | U Net | 0.5841 |
Residual U-Net | Custom Net | 0.6238 |
SSS | Tuned GSCNN | 0.5832 |
SSS | Tuned GSCNN | 0.6014 |
onemoretry | onemoretry | 0.4251 |
SGGS-IITJ | Dilated J-ResNet | 0.5661 |
CV Lab | Deep ConvNet | 0.1921 |
Aayush | encoder_decoder | 0.2509 |
Cerebro | Resnet50 | 0.0691 |
USSB | DCNN | 0.5733 |
Aayush | encoder_decoder | 0.2875 |
Aayush | encoder_decoder | 0.2271 |
USSB | pirv2 | 0.611 |
Cerebro | Resnet50 | 0.068 |
USSB | irv2 | 0.611 |
SGGS-IITJ | RESNET | 0.5384 |
Aayush | encoder_decoder | 0.2271 |
Aayush | encoder_decoder | 0.3147 |
Aayush | encoder_decoder | 0.3147 |
NAS_IITRPR | Baseline 2 | 0.536 |
SSS | Tuned GSCNN | 0.6141 |
tabasco | OCR | 0.5338 |
NAS_IITRPR | Meta Baseline | 0.5336 |
PARIMAL | U Net + CRF | 0.5397 |
SGGS-IITJ | DIl_r_resnet | 0.5661 |
SGGS-IITJ | Dil_r_resnet(tuned) | 0.564 |
tensorcat | dlv3p | 0.5511 |
Himanshu Mittal | MEnet | 0.0403 |
BharatAI | BharatAI-t0 | 0.5035 |
Himanshu Mittal | MEnetv1 | 0.0403 |
UNET | UNET | 0.5369 |
BharatAI | t3 | 0.5344 |
CV Lab | Deep ConvNet | 0.1919 |
CV Lab | Deep ConvNet | 0.4875 |
USSB | tuned pur7 | 0.6009 |
USSB | tuned pirv2 | 0.613 |
NAS_IITRPR | Model 2 | 0.5386 |
Espada | ENET | 0.4705 |
USSB | e5net | 0.6087 |
SGGS-IITJ | custom unet | 0.6039 |
BharatAI | t4 | 0.5748 |
BharatAI | BharatAI-t2 | 0.5588 |
Espada | UNET | 0.5729 |
lab | lab | 0.5714 |
tyrion | trying | 0.4333 |
BharatAI | Morphological Network | 0.5823 |
BharatAI | t4 | 0.5699 |
SGGS-IITJ | custom-unet | 0.6166 |
BharatAI | t4 | 0.5838 |
lab | lab | 0.5519 |
USSB | e7net | 0.6175 |
PARIMAL | Tuned U-Net | 0.4654 |
PHJA | lnet | 0.5276 |
SSS | Tuned GSCNN | 0.6167 |
Espada | Ensemble | 0.531 |
Espada | Ensemble | 0.531 |
small | s1 | 0.5897 |
CV Lab | Deep ConvNet | 0.4949 |
SGGS-IITJ | Tuned Custom U-net | 0.5515 |
PARIMAL | Tuned Tiramisu | 0.5965 |
SSS | Tuned GSCNN | 0.2229 |
USSB | ppirv2 | 0.6175 |
SGGS-IITJ | Tuned Custom U-Net | 0.5515 |
small | s1 | 0.5788 |
CV Lab | SegNet | 0.4884 |
USSB | p eff7net | 0.6276 |
SGGS-IITJ | Custom Net_final | 0.6117 |
small | s1 | 0.5897 |
Espada | UNET | 0.5577 |
bekar_phd_students | Unemployment ki shakti | 0.5718 |
PARIMAL | Tuned Tiramisu | 0.5952 |
BharatAI | Exp-Net | 0.5897 |
SSS | Tuned GSCNN | 0.2849 |
Aayush | encoder_decoder | 0.3451 |
Residual U-Net | Custom Net | 0.6245 |