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Abstract

While several datasets for autonomous navigation have
become available in recent years, they tend to focus on struc-
tured driving environments. This usually corresponds to
well-delineated infrastructure such as lanes, a small num-
ber of well-defined categories for traffic participants, low
variation in object or background appearance and strict ad-
herence to traffic rules. We propose IDD, a novel dataset
for road scene understanding in unstructured environments
where the above assumptions are largely not satisfied. It
consists of 10,004 images, finely annotated with 34 classes
collected from 182 drive sequences on Indian roads. The
label set is expanded in comparison to popular benchmarks
such as Cityscapes, to account for new classes. It also re-
flects label distributions of road scenes significantly different
[from existing datasets, with most classes displaying greater
within-class diversity. Consistent with real driving behaviors,
it also identifies new classes such as drivable areas besides
the road. We propose a new four-level label hierarchy, which
allows varying degrees of complexity and opens up possibili-
ties for new training methods. Our empirical study provides
an in-depth analysis of the label characteristics. State-of-the-
art methods for semantic segmentation achieve much lower
accuracies on our dataset, demonstrating its distinction com-
pared to Cityscapes. Finally, we propose that our dataset
is an ideal opportunity for new problems such as domain
adaptation, few-shot learning and behavior prediction in
road scenes.

1. Introduction

Autonomous navigation is rapidly maturing towards be-
coming a mainstream technology, with even consumer de-
ployment by major automobile manufacturers. A significant
contributor to this progress has been the availability of large-
scale datasets for sensing and scene understanding. Yet,
several challenges remain in enabling self-driving across

Figure 1. Some examples of the diverse and unstructured condi-
tions that is covered by the dataset.

diverse geographies. A key challenge is to achieve data scale
and diversity large enough to ensure safety and reliability in
extreme corner cases. Even more importantly, algorithms
are largely untested in their ability to generalize to road con-
ditions that are significantly more diverse and unstructured.

In this paper, we propose IDD, a dataset that takes the first
steps towards addressing the above concerns. Our dataset
shares several traits such as scale, annotation and tasks with
similar ones in structured environments, namely KITTI [15]]
or Cityscapes [5)]. But it also intends to significantly ex-
pand the scope of the autonomous navigation problem, along
each of those dimensions. Similar to Cityscapes [5]], we pro-
vide large-scale raw data with multiple cameras and sensors
across cities and lighting conditions. But the scale of our
data is larger, consisting of 10, 004 labeled images with fine
instance-level boundaries. Next, while the annotation type
is similar for our dataset and Cityscapes [5], the number
of object classes and within-class diversity of appearance
are higher for IDD. Finally, while we also initially propose
instance segmentation as the task of interest, our label diver-
sity and novel hierarchy might allow novel machine learning
techniques and computer vision algorithms.

The singular defining aspect of our dataset is that it corre-

sponds to driving in less structured environments. We argue
that this is a better reflection of the needs for autonomous
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Figure 2. Label distribution in our dataset. The following information is shown here: (i) pixel counts of individual labels on the y-axis (ii)
four-level label hierarchy used by the dataset at the bottom, (iv) the color legend for the predicted and ground truth masks shown in the paper
is used for the corresponding bars. We define metrics at 4 levels of the hierarchy with 30 (level 4), 26 (level 3), 16 (level 2) and 7 (level 1)
labels, respectively, giving different complexity levels for training models.

navigation in large portions of the world, including Asia,
South America and Africa. Accordingly, we collect our
data in India where road scenes differ markedly from those
in Europe or North America. The variety of traffic par-
ticipants in Indian roads is larger, including novel classes
such as autorickshaws or animals. The within-class diver-
sity is also higher, for example, since vehicles span a larger
range of manufacturing years and ply with larger variation
in wear. Even the distribution of classes that overlap with
Cityscapes is significantly different, for instance, the pro-
portion of motorcycles is far higher, as is that of multiple
riders on two-wheeled vehicles. Background classes also
display greater diversity, such as city scenes rich in novel
classes such as billboards. Besides variations in weather
and lighting, other ambient factors such as air quality and
dust also span greater ranges in our dataset. Such greater
complexity of road scenes necessitates a larger scale of data.
Thus, we provide high-quality annotation at a scale signifi-
cantly larger than available for other contemporary datasets
such as KITTI or Cityscapes. E|

We provide a detailed analysis of the label distributions in
the IDD dataset, while highlighting some of the above differ-
ences. We also showcase those differences through quantita-
tive evaluation of state-of-the-art algorithms on our dataset.
We consistently observe that semantic segmentation perfor-
mances are far lower on IDD as compared to Cityscapes,
using identical models and with larger-scale training data for
IDD. Firstly, this highlights that conventional semantic seg-
mentation datasets such as Cityscapes are getting saturated
and the next set of challenges lie in more complex datasets

Datasets such as Berkeley Deep Driving [26] and Apolloscape
have recently been released with labels at a similar scale. However, they are
contemporaneous with our work, which precludes a detailed comparison.
In any case, we note that they are in structured environments, which makes
our dataset clearly different.

like IDD. Secondly, this highlights the need for ever-larger
training data as we expand the scope of the autonomous
navigation problem to newer geographies.

Besides segmentation, the nature of our dataset also en-
ables novel problems for vision and learning. This is already
reflected in some of our annotation choices. For instance,
while the notion of a drivable area in Europe is largely de-
fined by classes such as roads or lanes that have distinct
appearances, it is more ambiguous in our dataset and likely
also informed by semantic cues such as presence of dynamic
traffic participants. Thus, we include labels for safely driv-
able and non-drivable areas. Our label hierarchy is attuned
to the autonomous navigation problem and we postulate
that exploiting it might lead to semantic segmentation more
suited to subsequent applications such as collision avoidance
or path planning. We label classes that are rare but impor-
tant for navigation (such as animals), or classes that exhibit
large within-class variance (such as autorickshaw), which
motivates problems such as few-shot learning.

The contrast of our dataset with structured ones also sug-
gests interesting directions of future research. For instance,
domain adaptation between Cityscapes and IDD is clearly
a need given the large performance drops encountered in
cross-dataset settings. Classes that are unique to our dataset
also encourage consideration of domain adaptation with non-
overlapping label spaces. Even higher-level reasoning prob-
lems such as behavior prediction pose new challenges in
IDD, since traffic participants have lower adherence to traf-
fic rules, motions can be sudden, complex obstructions might
be present, drivable areas can be ambiguous and traffic lanes
need not correspond to lane markings on the road. While
not considered in this paper, we highlight that these novel
problems do arise in unstructured environments such as ours.



Figure 3. Cityscape models do not distinguish between the road
and possible unsafe drivable area on both sides of the road.

2. Challenges in Unstructured Environments

We collect data from Indian roads and analyze the short-
comings of models trained on existing datasets. As illus-
tration, we describe some of the qualitative issues observed
when using predicted outputs of a model that obtains 70%
mean IoU on the Cityscapes validation set.

Ambiguous Road Boundaries. Road boundaries in
Cityscapes are very well defined and usually flanked on
both sides by barriers or sidewalks. However, this is not
the case in our setting. Road sides can have muddy terrain,
while also being drivable to some extent. Roads themselves
can be covered by dirt or mud, making the boundaries very
ambiguous. On the other hand, Cityscapes models often
recognize flat areas beside the road which need not be safe
for driving as road, as seen in Figure 3]

Diversity of Vehicles and Pedestrians. Indian roads have
a variety of unique vehicles like auto-rickshaws, which be-
have very differently than other vehicles like cars. Even for
standard categories like cars, the appearance variations are
higher due to greater wear and tear. Further, the frequency
and variety of trucks and buses are also high. Another dis-
tinction is the large number of motorbikes with multiple
persons riding it. Pedestrians often cross the road at arbitrary
locations, rather than crosswalks. Bikes and autorickshaws
are also less likely to follow traffic discipline, thus, there
are fewer correlation between traffic participants and road
signage such as lanes or traffic lights.

Extensive Use of Information Boards. Information dis-
plays such as billboards appear extensively in our dataset.
They can be significant for localization and mapping prob-
lems by indicating buildings or landmarks. Sometimes they
also indicate special vehicles, such as advertisements at-
tached to a driving school car, or a delivery vehicle.

Diversity of Ambient Conditions. Lighting variation in
our dataset is high since we acquire images at various times
of the day, including mid-day, dawn and dusk. Also, some of

Figure 4. (Top) A herd of buffaloes on the road at dusk. (Bottom)
Many motorbikes with multiple riders, not necessarily following

—

Figure 5. (Left) An array of billboards indicating the shops. (Right)
A vehicle with a billboard of a driving school.

the images have heavy shadows, which are common during
a long summer season. Our dataset also contains scenes with
heavily clouded skies. The greater variation in particulate
matter due to fog, dust or smog also leads to significant
appearance variations. Cityscapes pretrained models yield
lower accuracies in these settings, as seen in Figure[6]

3. Dataset
3.1. Acquisition

The data was collected from Bangalore and Hyderabad
cities in India and their outskirts. The locations have a mix



Nearby Distortion

o #Images/ #Labels Average
Dataset Calibration frames /Night #Sequences Train/Total Resohigtion
/ Video
Cityscapes v v 5K/ 50 19/34 2048x1024
IDD v v 10K /180  30/34 1678x968
BDD100K [26] v v 10K/ 10K 19/30 1280x720
MVD [16] 25K/ - 65/66 >1920x1080

Table 1. Comparison of semantic segmentation datasets for autonomous navigation.

Figure 6. Heavy shadows in the image (top) or low light conditions
(bottom) can greatly degrade the quality of predictions using models
trained on Cityscapes.

of urban and rural areas, highway, single lane and double
lane roads with a variety of traffic. The driving conditions
in these localities are highly unstructured due to multiple
reasons: (i) these cities are rapidly growing and have a lot
of construction near the roads, (ii) road boundaries are not
well defined, (iii) pedestrians and jaywalkers are aplenty in
these road images, and (iv) high density of motorbikes and
trucks on the road. The variety of vehicle models are also
very large. A total of 182 drive sequences were used for the
preparation of the dataset.

3.2. Frame Selection

We chose images from one of the forward facing cameras
of a stereo pair, for fine annotation. Images were sampled
at varying rates from the video sequence, with denser sam-
pling around crowded and special interest places like traffic
junctions. These images were annotated very finely, by lay-
ered polygon masks similar to Cityscapes. Since the road
conditions are highly unstructured, we need a wider variety
of labels. We annotated a total of 10,004 frames.

3.3. Label Hierarchy & Annotation

We used a total of 34 labels in the fine annotations. The
labels were given definition by means of a textual description
as well as example images. However, we found that it is
difficult to completely avoid ambiguity between some labels.
For example labels like parking, caravan or trailer cannot

be precisely defined due to the diversity of the scenes and
vehicles in the data collected. For resolving this issue, we
designed a 4 level label hierarchy having 7 (level 1), 16 (level
2), 26 (level 3) and 30 (level 4) labels (see Figure[2). Each
level defines a category as the union of labels in the succeed-
ing level, which are chosen such that they are ambiguous.
Since we take unions of the most ambiguous labels while de-
signing the hierarchy, the lower levels have lesser ambiguity.
We have a set of new labels not available in Cityscapes [J5]]
like auto rickshaw, billboards, animal, curb. We also have
separate labels for road, drivable fall-back and non-drivable
fall-back indicating safe, unsafe and non-drivable flat sur-
faces. We have added fall-back labels whenever appropriate
so that highly ambiguous objects can be given labels.

For labeling the dataset, the annotation team was first
asked to re-annotate images from the Cityscapes [5]] dataset.
The difference between the annotations were subsequently
shown to the annotators. This process was done until the
annotators were achieving greater than 95% accuracy with
respect to the Cityscapes ground truth labels.

3.4. Statistical Analysis and Dataset Splits

The pixel statistics among the labels can be seen in Figure
] The labels in level 4 have high class imbalance. Labels
like parking, animal, caravan or traffic light have much fewer
pixels. The annotated dataset also has labels for trailer and
rail track, which were combined with vehicle fallback and
nondrivable fallback in level 4, since they have very few
pixels that mostly fell within a few drive sequences. The
lower levels are designed such that the imbalance is lesser.

Class imbalance at level 4, creates a problem while split-
ting the dataset in train, test and validation sets. Since the
splitting is done at the level of drive sequences (that is, all
images within a drive sequence are moved to the same split),
we need to be careful that the few drive sequences that con-
tains a label are rightly split. We roughly divide the dataset
in to 70% train, 10% validation and 20% test splits. The split
was done by randomly assigning the drive sequences with
the said distribution. We did the splitting multiple times to
come up with a split where all the 30 labels in level 4 have
approximately 70, 10 and 20 percentage of pixels in the train,
validation and test sets, respectively.
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Figure 7. Comparison of the pixel count in our dataset with Cityscapes. The y axis is plotted in log-scale. Note that for most classes of
vehicles, the number of pixels are 5-10 times more than Cityscapes. Moreover our dataset has newer labels like autorickshaw, billboard,
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Figure 8. Comparison of traffic participants in our dataset with
Cityscapes.

3.5. Comparison with Other Datasets

Various datasets have been proposed for studying the
semantic and instance segmentation problems like Pascal
VOC [7], MS COCO [13], SUN [23]22]. The datasets pro-
posed for semantic segmentation that focus on autonomous
navigation are Cityscapes [3]], KITTI [13], Camvid [2} [1],
Leuven [12] and the Daimler Dataset [21]. ADE20K [29] is
a recent dataset which focuses on the general scene parsing
problem. More recently Mapillary Vistas dataset [16] (which
focuses on street view imagery) and the Berkeley Deep Drive
Dataset [26]] (for autonomous navigation) was released. A
comparison of the metadata available in these datasets can
be seen in Table m As can be seen, our dataset is more
similar to Cityscape in the sense that we collect data from
calibrated cameras without any distortions. BDD100K uses
dashboard cameras kept inside the car and hence often has
internal reflections from the glass as well as rain distortions.
Moreover a good fraction of the dataset consists of night
images. Mapillary Vistas dataset consists of images taken
using a variety of cameras (including smart phones) having
varying perspectives of the road and the road side. They do
not have video data or images of near by frames.

We compare the label statistics of our dataset with
Cityscapes (since it is more similar to our dataset as de-
scribed above) in terms of pixel counts (Figure [/) and
the number of instances of traffic participants (Figure [g).
We have more pixels of truck, bus, motorcycle, guard rail,
bridge and rider (see Figure [7). The pixel counts for new

9% mloU at Hierarchy Levels

Method

1 2 3
GT subsampled by 2 99 97 97
GT subsampled by 4 98 96 95
GT subsampled by 8 96 92 90
GT subsampled by 16 92 87 84
GT subsampled by 32 86 78 74
GT subsampled by 64 77 66 61
GT subsampled by 128 65 53 48

Table 2. Control experiments to estimate upper bounds for se-
mantic segmentation results, assessed by Intersection-over-Union
(IoU, in %) scores for different levels of the hierarchy.

labels (auto rickshaw, billboard, curb, drivable-fallback,
nondrivable-fallback) are also high. In terms of instances of
traffic participants, we have almost double the counts, with a
distribution similar to Cityscapes (see Figure g).

4. Benchmarks
4.1. Control Experiments

In Table[2] we provide the results of some control experi-
ments which provide upper bounds for IoU scores for models
giving predictions at a given factor of the input resolution.
We first downsample the ground truth by a given factor and
then upsample it to the original image size for evaluation
of average IoU at original scale. We provide the mean IoU
scores of different levels of the hierarchy, confirming that
low-resolution processing contributes significantly to overall
degradation of segmentation results.

4.2. Domain Discrepancy

Domain discrepancy studies the quantitative shift in data
distributions between datasets. To understand it, we train
a DRN-D-38 (Dilated Residual Networks [23]) model in
Cityscapes [5], Mapillary [16], BDD100K [26] and our
dataset. We compare the IoU scores in a set of 16 com-



2 g g 3 T 55
SR e % & & £ 5§ : £ % & E E = 2 & % %83
CS DS 72 22 30 47 10 58 30 19 17 13 19 8 23 32 76 68 34
DS CS 81 26 74 34 55 8 16 17 21 24 25 21 47 77 90 88 49
BD ID 8 0 38 44 2 52 21 13 0 0 0 0 36 42 8 9% 32
ID BD 8 16 57 34 44 77 14 24 10 33 18 13 41 68 82 87 44
CS CS 98 84 81 60 76 94 56 78 49 58 77 67 62 92 92 94 76
MV MV 8 58 73 55 61 90 61 65 45 58 72 67 50 8 90 98 70
ID ID 92 68 73 80 42 8 79 78 64 45 60 38 58 75 90 97 70
BD BD 95 62 61 32 22 90 52 57 25 45 52 58 49 85 87 97 60

Table 3. The domain discrepancy between Cityscapes (CS) [S], Mapillary Vistas (MV) [16], Berkeley Deepdrive (BD) [26] Dataset and
IDD (ID) using the DRN-D-38 Model [25]. Performance for only the common labels between the four datasets are used. First two rows
compares the accuracy of a model trained on one of IDD or Cityscapes and tested on the other dataset. As can be seen, IDD trained model
can predict CS and BD labels, better than predictions of trained models of the corresponding datasets on IDD. The bottom four rows gives
the performance of models in each of the datasets. IDD dataset is harder than CS dataset and similar in hardness to MV on these 16 labels.
BD is harder because i.) it has night scenes ii.) the images are take from a dash board cam, hence has reflections from inside the car as well

as distortions like rain drops on the mirror.

mon labels between the four datasets in Table[3l As seen
from the last four rows, our dataset is harder than Cityscapes
while having a similar level of hardness compared to the
Mapillary Vistas Dataset. We also report IoU scores of pre-
dictions given by models trained on one dataset and tested
on the other. A pretrained model trained on our dataset per-
forms better when tested on Cityscapes and BDD100K, as
compared to the converse experiment.

4.3. Semantic Segmentation Benchmark

The semantic segmentation benchmark on our dataset
quantifies the mean Intersection over Union (mlIoU) scores
at the four levels of the hierarchy. There are some labels
in level 4 like traffic light, parking or animal for which the
number of labeled pixels are very few. Hence, this serves
as an excellent benchmark for transfer learning or domain
adaptation problems. We also have level 1 and level 2 mIoU
scores, which are a useful benchmark for real-time models,
since they might not be able give good results on the fine
grained classification task at level 3 and 4. The level 1
benchmark still has classes for most of the essential labels
for autonomous navigation.

We benchmarked our dataset using the DRN-D-38 ([25]))
and the ERFNet (real-time model [19]) model. We also
conducted a challenge and evaluated submissions which use
some of the state-of-the-art models. The results are shown
in Table @

4.4. Class IoUs and Confusion Matrix

The IoUs for every class can be found in Figure[9] We
observe that the IoUs are lower than 25% for bicycle, traffic
light, vehicle fall-back and fence labels. The low scores for

% mloU at Levels

Method
L1 L2 L3

ERFNet - - 554
DRN-D-38 859 72.6 66.6
*DeeplabV3+ [4] 89.8 78.0 74.0
*PSPNet [27]] 899 78.0 74.1
*Wider Resnet-38, DeeplabV3 De-

coder, Inplace ABN [20], Ensem- 89.7 779 74.3

ble of 4

Table 4. The mloU scores of models at 3 level of the hierarchy.
The performance numbers of * models are obtained from the sub-
missions of a AutoNUE challenge [11] conducted based on the
dataset.

bicycle and traffic light can be explained by the low pixel
counts. We also plot the confusion matrix between labels in
Figure Note that there is significant confusion between:

e motorcycle and bicycle.

e billboard and traffic sign.

e obs-str-bar-fallback, vegetation and traffic light.
e building and billboard.

e vegetation and wall, pole, fence.

e drivable, non-drivable, vegetation.

We analyze some examples of predictions in Figure
As can be seen, model trained on our dataset gives prediction
of much better quality in unstructured setting. It identifies
the muddy areas which can be driven. New labels like au-
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Figure 10. The confusion matrix of the trained model.

Method AP AP@50
*MaskRCNN [[8] with ResNet101 0.268 0.499
*PANet [[14] 0.376  0.661

Table 5. The AP scores of models for instance labels. The perfor-
mance numbers of * models are obtained from the submissions of
the AutoNUE challenge conducted based on the dataset.

torickshaw, curb, billboard etc are getting identified.

4.5. Instance Segmentation Benchmark

Similar to other datasets, we also specified an instance
segmentation benchmark, where individual instances of the
same label need to be segmented separately. The algorithms
are required to predict a set of detections of traffic partici-
pants in the frame, with a confidence score and a per-instance
binary segmentation mask. To assess the performance, the
average precision on the region level for each class and aver-
age it across a range of overlap thresholds ranging from 0.5
to 0.95 in steps of 0.05, similar to [13].

The results of some best performing submissions from
the challenge are given in Table[5]

vehicle fallback

guard rail
billboard
traffic sign
traffic light
building
vegetation

The IoUs for every class for the DRN D 38 model trained on IDDwith mIoU of 66.5%.

5. Conclusion

We present a novel dataset for studying problems of au-
tonomous navigations in unstructured driving conditions.
We identify several drawbacks of existing datasets, such as
distinguishing safe or unsafe drivable areas beside the road,
additional labels required for vehicles and a label hierarchy
that reduces ambiguity. We analyze the label statistics and
the class imbalance present in the dataset. We also examine
the domain discrepancy properties with respect to other se-
mantic segmentation datasets. In contrast to existing datasets
on semantic segmentation, ours is acquired in India, which
leads to greater diversity due to variations in appearance of
traffic participants as well as background categories. Not
only does this pose interesting challenges for the state-of-
the-art in semantic segmentation, it is also the first effort in
our knowledge to focus on problems related to autonomous
driving in geographies outside North America or Europe
with relatively less developed road infrastructure.

In the future, we plan to extend the benchmark to com-
puter vision problems beyond semantic segmentation. In
particular, the unconstrained nature of the dataset provides a
uniquely novel setting for higher-level reasoning problems
such as scene understanding [9, and path planning
[6]. Motions in the dataset are less constrained due to greater
freedom in traffic participant behavior and less adherence
to traffic rules. The possible absence of visual cues such
as lanes that constrain traffic participant behavior poses fur-
ther challenges. Besides the presence of rare categories
[24]], even common categories have diverse attributes or ap-
pearance variations. Besides, the ambient conditions differ
greatly across weather, time of day and air quality. This also
motivates interesting new problems for few shot learning
[3]] and domain adaptation [18]], which our future work will
study in greater detail.
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Figure 11. We give many qualitative example with: input image from validation set, predictions from Cityscape pretrained model, prediction
from model trained on our training dataset and the ground truth in our dataset in the order of columns.




References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic
object classes in video: A high-definition ground truth
database. Pattern Recognition Letters, 2008.

G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla.
Segmentation and recognition using structure from mo-
tion point clouds. In ECCV, 2008.

S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixé,
D. Cremers, and L. Van Gool. One-shot video object
segmentation. In CVPR, 2017.

L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and
H. Adam. Encoder-decoder with atrous separable
convolution for semantic image segmentation. CoRR,
abs/1802.02611, 2018.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. En-
zweiler, R. Benenson, U. Franke, S. Roth, and
B. Schiele. The cityscapes dataset for semantic urban
scene understanding. In CVPR, 2016.

D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel.
Practical search techniques in path planning for au-
tonomous driving. AAAI 2008.

M. Everingham, L. Van Gool, C. K. L
Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge

2012 (VOC2012) Results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.
[22

K. He, G. Gkioxari, P. Dollr, and R. Girshick. Mask
r-cnn. In ICCV, 2017.

D. Hoiem, J. Hays, J. Xiao, and A. Khosla. Guest
editorial: Scene understanding. International Journal
of Computer Vision, 112(2):131-132, Apr 2015.

X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou,
P. Wang, Y. Lin, and R. Yang. The apolloscape dataset
for autonomous driving. arXiv: 1803.06184, 2018.

C. Jawahar, A. Subramanian, A. Namboodiri,
M. Chandrakar, and S. Ramalingam. Au-
tonomous navigation in unconstrained environ-
ments (AutoNUE) workshop and challenge at
ECCV’18. http://cvit.iiit.ac.in/
scene—understanding—-challenge—-2018/.

B. Leibe, N. Cornelis, K. Cornelis, and L. V. Gool.
Dynamic 3d scene analysis from a moving vehicle. In
CVPR, 2007.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollar, and C. L. Zitnick. Microsoft
coco: Common objects in context. In D. Fleet, T. Pa-
jdla, B. Schiele, and T. Tuytelaars, editors, ECCV,
2014.

S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. Path aggregation
network for instance segmentation. In CVPR, 2018.

[15]

[16

—_

M. Menze and A. Geiger. Object scene flow for au-
tonomous vehicles. In CVPR, 2015.

G. Neuhold, T. Ollmann, S. R. Bul, and P. Kontschieder.
The mapillary vistas dataset for semantic understanding
of street scenes. In ICCV, 2017.

A. Oliva and A. Torralba. Modeling the shape of the
scene: A holistic representation of the spatial envelope.
International Journal of Computer Vision, 42(3):145—
175, May 2001.

V. M. Patel, R. Gopalan, R. Li, and R. Chellappa. Vi-
sual domain adaptation: A survey of recent advances.
IEEFE Signal Processing Magazine, 32(3):53—69, May
2015.

E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Ar-
royo. Erfnet: Efficient residual factorized convnet for
real-time semantic segmentation. /EEE Transactions
on Intelligent Transportation Systems, 19(1):263-272,
Jan 2018.

S. Rota Bulo, L. Porzi, and P. Kontschieder. In-place
activated batchnorm for memory-optimized training of
dnns. In CVPR, 2018.

T. Scharwichter, M. Enzweiler, U. Franke, and S. Roth.
Efficient multi-cue scene segmentation. In J. Weickert,
M. Hein, and B. Schiele, editors, Pattern Recognition,
pages 435-445, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

] S. Song, S. Lichtenberg, and J. Xiao. Sun rgb-d: A

rgb-d scene understanding benchmark suite. In CVPR,
2015.

J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Tor-
ralba. Sun database: Large-scale scene recognition
from abbey to zoo. In CVPR, 2010.

J. Yang, B. Price, S. Cohen, and M. Yang. Context
driven scene parsing with attention to rare classes. In
CVPR, 2014.

F. Yu, V. Koltun, and T. Funkhouser. Dilated residual
networks. In CVPR, 2017.

F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan,
and T. Darrell. Bdd100k: A diverse driving video
database with scalable annotation tooling, 2018.

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid
scene parsing network. In CVPR, 2017.

B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and
A. Oliva. Learning deep features for scene recogni-
tion using places database. In NIPS, 2014.

B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and

A. Torralba. Scene parsing through ade20k dataset. In
CVPR, 2017.


http://cvit.iiit.ac.in/scene-understanding-challenge-2018/
http://cvit.iiit.ac.in/scene-understanding-challenge-2018/

